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Abstract

CPUs, network interfaces, and networks are improving, providing higher bandwidths
and lower latencies. System software overhead makes it impossible for a user ap-
plication to achieve bandwidths and latencies near the hardware limits. This is
especially true for remote handler invocation. Typically, the remote node has to
trap into the kernel and perform an expensive context switch to the handler. This
hampers global communication operations and runtime systems, such as the one for
Cilk and Split-C for example.

Executing the untrusted remote handler inside the operating system kernel elim-
inates the overhead of context switches and disrupted cashes. Several methods to
execute untrusted user code in a privileged environment exist. The research pro-
posed in this paper compares these methods and attempts to prove that a kernel
embedded interpreter has the necessary performance and safety characteristics to
be the ideal method for remote handler invocation in massively parallel systems.
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Chapter 1

Introduction

A statement of the problem and why it should be solved [55].

Explicit message passing and various forms of one-sided communications (puts
and gets) are efficient methods to harness the power of a distributed memory ma-
chine. Much effort and research is being spent on improving message passing latency
and bandwidth for massively parallel systems. While this research is important, it
does not address remote execution. Often it is necessary to perform a simple action,
such as adding two numbers or incrementing a counter, when a message arrives.
Most mechanisms that support remote execution have an overhead of ten to a hun-
dred times the cost to deliver a simple message.

Collective communications, such as broadcast and global sum, need low latencies
to send messages between nodes. On each node, however, it is important that the
message be processed quickly and then sent on to other nodes. This is difficult
for routines that allow user-defined operations. While common operations, such as
global sum and global max, are often part of the native message passing system,
user specified functions have to be executed in user space and the overhead of a
context switch, to run the function, delays the global operation.

Another class of user-level systems that require remote execution of user (or
library) specified code, are runtime systems. For example, Cilk’s [9] runtime system
achieves load balancing through work-stealing. An idle node with no work chooses
another node at random and sends it a work-steal request. The “victim” node
should respond quickly with new work, or a negative acknowledgment. The goals
are to minimize the impact on working nodes and to get an idle node working again
as quickly as possible.

Another example is Split-C [16], which uses remote put and get operations to
transfer data from one node to another. To avoid deadlocks, allow for synchroniza-
tion, and guarantee atomicity, small handlers that are part of the Split-C runtime
system, have to be executed on most message arrivals. Split-C is usually imple-
mented on top of an active message layer. The arrival of an active message triggers
the execution of a handler that performs a small amount of work, such as incre-
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menting a counter, and then sends a reply. It is crucial that this handler be invoked
as soon as possible after the active message arrives.

In all three examples (collective operations, Cilk, and Split-C), the user appli-
cation or a third party runtime system specifies a function to be executed when a
message arrives. Response time can be reduced if these functions are invoked im-
mediately when a message arrives. Several methods have been devised to address
this need.

Active messages [100] transmit the address of a function to be executed on
the remote node, along with a small amount of data passed as parameters to the
function. Most implementations poll for incoming messages and then jump to the
address specified in the message header. Handler invocation can be very fast. Single
digit microsecond latencies are reported in the literature. Latencies are much higher
if the remote node is busy with a long computation and is not polling at the moment
the active message arrives.

Intel’s NX message passing system for the Paragon [73, 74] provides the functions
hrecv() and hsend() to execute user defined handlers on message arrival or com-
pletion of a send. The implementation is interrupt driven. After calling hsend (),
the application continues to run. When the send completes, that is, the data has
been delivered to the remote node, the sending application is interrupted and the
handler specified as a parameter to hsend () is run. Similarly, an hrecv() sets up a
buffer and matching criteria for an incoming message and specifies a handler. When
a message is deposited in the buffer, the receiving application is interrupted and the
handler is run. The overhead to context switch to the handler is high compared to
the cost of receiving a message (about 300us versus 14us).

In the Puma operating system [104, 105, 84] a portal event handler can be
attached to any Puma portal. The user specified handler is run after the message
has been deposited in the portal. As with hsend() and hrecv (), this requires a
relatively expensive context switch.

As these examples illustrate, methods that provide the necessary functionality
exist. All of them have a performance impact on the receiving node and introduce
significant delays in the propagation of messages to other nodes.

Consider the example of a broadcast where a single node sends information to
all other nodes in the application. In a distributed memory architecture this can
be done using a fanout tree. The originating node sends a message to one of its
neighbors. The neighbor then passes the message to one of its other neighbors,
while the originating node is copying the message to yet another node. This pattern
continues until all nodes have received the message.

Each node has to receive the message and then send it on to the appropriate
nodes in the fanout tree. Implementing a broadcast using basic point-to-point mes-
sage passing operations has several drawbacks. If a node in the middle of the fanout
tree has not completed its current task, its participation in the fanout will be delayed
and the children of that node will have to wait, even if they are ready to receive the
broadcast data. On architectures where the network interface can only be accessed



in supervisor mode, the necessary trap into the kernel and back to user level further
increases the cost for each message receipt and send.

Using (non-polling) active messages, Intel’s hsend() and hrecv(), or Puma
portal event handlers, the problem of delaying a broadcast by a busy intermediate
node can be avoided. There is a cost associated with this. When a message arrives,
a context switch from the currently running application to the the user specified
handler and back to the application occurs. These interrupt driven context switches
are expensive, especially on modern RISC CPUs which have to save and restore a
large amount of internal context. Context switches disrupt cache and TLB contents
and impact the currently running application.

The research proposed in this document explores ways to avoid these additional
context switches and thereby improve the performance of runtime systems and other
communication primitives that require user specified handlers.

More specifically, we will explore methods to execute untrusted user code in
supervisor mode, while the kernel is receiving a message. If all desired user specified
functions were known a priori, they could be built directly into the operating system
kernel. On message arrival the kernel would then simply execute that function and,
after that, return to the user level. On systems with a general purpose message
processor, such as the Intel Paragon, the coprocessor could execute the handler
without interrupting the user code that is running on the main CPU.

Of course, it is impossible to anticipate all possible user handlers. Therefore, an
approach to let user applications insert code into the kernel at runtime is needed.
Since this code is untrusted and executed in supervisor mode at the time a message
arrives, precautions must be taken to ensure the integrity of the kernel and other
applications.

In the next chapter we will look in detail at the cost of user level message
handlers and the potential savings of running handlers in kernel mode. We will
also look at methods to safely execute untrusted code in the kernel of an operating
system. In Chapter 3 we discuss work that is related to this proposal. In Chapter 4
we characterize our proposed solution and establish the criteria to measure and
compare our solution. Finally, in Chapter 5, we outline a statement of work and a
schedule.



Chapter 2

Key Ideas and Concepts

The candidate’s ideas and insights for solving the problem and any pre-
liminary results he may have obtained [55].

Based on the examples listed in the introduction, we define a common model that
describes the execution path on a node. During a broadcast, each node receives a
message that is to be distributed to its children in the fanout tree. (The originating
node is at the root of the tree and generates the message.) Each node identifies
its children when the broadcast message is received and then sends a copy of the
message to each child. Therefore, for a broadcast a node needs to be able to receive a
message, calculate the addresses of its children in the fanout tree, and send messages
to them.

For a global sum, a node receives data from its children, sums it, adds its own
contribution, and sends the result to the parent. Instead of sum, the operation can
be any function, even one specified by the user.

The Cilk work-stealing example is, in principle, no different than the one above.
A node receives a work-steal request, checks its task queue, and sends a message
back to the originator. Checking the task queue, potentially removing an entry
from the queue and sending a work order back, is slightly more complicated than
determining the children in a fanout tree. Nevertheless, the basic principle remains
the same. A node receives one or more messages, does some processing, and then,
potentially, sends one or more messages. The routine performing the processing is
called a handler.

Most remote operations in the Split-C runtime system require the update of a
counter. A node receives a message, increments or decrements a counter and sends
some data or an acknowledgment back to the originating node.

We should note that this work concentrates on efficient and quick processing of
external, asynchronous events. Another approach is to have the user program or
the runtime system occasionally check for new messages (polling). If a message has
arrived, the corresponding handler is called. This approach works especially well on
architectures where the network interface is mapped into the user’s address space.
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The routine that polls for new messages can read the message and call the handler
specified in the message. Assuming that the polling operation occurs with sufficient
frequency, this avoids costly interrupts and allows for rapid dispatching of handlers.

On architectures where incoming messages generate interrupts and calls to the
operating system kernel are necessary to send messages, the main advantage of
polling disappears. Furthermore, for operations such as a broadcast or work-stealing
where the currently running thread does not directly contribute (it is doing some-
thing else now), the response time is better and much more predictable, when an
interrupt driven implementation is used.

There is another disadvantage of a polling implementation. Sometimes it is
impossible to poll frequently enough. For example, during a long computation in a
BLAS library call, the application writer cannot insert polling operations.

In Section 2.1 we will concentrate on a model that is common to the above examn-
ples and many others in daily use on high-performance systems. This section should
convince us that executing a user defined handler in the kernel has performance ad-
vantages. In Section 2.2 we will look at different methods to execute untrusted code
safely inside an operating system kernel.

2.1 Cost Model

Instead of examining each of the earlier examples in more detail, we will now con-
centrate on a common model and study the events and associated costs on a given
node. Figure 2.1 depicts the principle graphically. The arrival of one or more mes-
sages triggers a small amount of computation that results in zero or more messages
being sent.

We now consider the events that take place on a node from the time a message
arrives until the handler completes and normal operation on the node is resumed.
There are three cases.

1. Architectures that require supervisor (kernel mode) privileges to access the
network interface.

2. Architectures that map the network interface into the user’s address space.

3. Architectures that dedicate a general purpose CPU to the handling of com-
munication.

For each architecture we consider the cost of a handler running in user mode,
including the necessary context switches, and compare it with the case where the
handler is executed in the kernel itself.

2.1.1 Restricted Access to Network Interface

On systems of this type it is necessary to trap into the kernel to send or receive
a message. The network interface uses physical addresses to access main memory
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Figure 2.1: Common Events: A node receives one or more mes-
sages, does some processing, and then, potentially, sends one or more

messages.

on the node'. This simplifies the design of the network interface, but requires
access in supervisor mode to prevent user applications from destroying or reading
portions of main memory that must be protected. Protecting the network interface
is also necessary to prevent sending of data to arbitrary nodes in the system. This
architectural model is the most common. The Intel Paragon, even though it has
two and three CPUs on each node, can be operated in this manner under the Puma
operating system.

Handler at User Level

Figure 2.2 shows the events that take place. We are interested in reducing the total
time the user application is delayed: Ageqy. Also of interest is the response time
(Aesp); the time from message arrival until the handler begins to run.

Table 2.1 summarizes the time intervals that characterize the events on a given
node. A message arrives at a node and causes an interrupt. The CPU switches
into supervisor mode, saves the current context, and sets up the context for the
kernel to run. This time interval is symbolized by A;,;. The kernel then proceeds
to read the message from the network interface into a buffer in main memory. We
represent this time interval with A,.,. The value for A,., varies with the length of

!Some architectures, such as the iPSC/860, do not let the network interface access memory
directly. Instead, the network interface consists of a send and a receive FIFO. A program has
to read and write the FIFO for each word transferred. Access to the FIFO registers has to be
controlled to prevent applications from reading data that is intended for another process.
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Adelay

Aswi'rch Aret Are'r Areti

handler

Figure 2.2: Execution Flow on a Node with Restricted Access

to the Network Interface: An arriving message interrupts the

currently running user application. The kernel, in supervisor mode,

receives the message and deposits it into a buffer. A context switch

to the appropriate handler occurs. To send messages, the handler

has to trap into the kernel. A final trap into the kernel is necessary
to resume the interrupted user application.

the message. Furthermore, for longer messages it is possible to engage the DMA
unit and continue processing while the message is being received. For our analysis
we ignore this optimization and assume the CPU remains busy during the receipt
of the message.

After determining which handler to invoke, it takes Agyiten time to switch con-
text and start running the handler. In the example of Figure 2.2 the handler does
some processing and then sends two messages. For each message the handler has
to trap into the kernel, Ay4p. The kernel will send the message (with the same
assumption about staying busy as for message reception). This takes A.,q time,
which increases with larger messages. The time to return from the kernel trap back
to the handler is A,.;.

When the handler finishes, it traps into the kernel one more time to re-establish
the original context. The time it takes to return from an interrupt to the user level
process is Ape;.
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Table 2.1: Time Intervals of Interest

Symbol | Description

Nint Time to switch context and enter kernel mode on a interrupt
Arey Time to read a message from the network

Aguiten | Time to instantiate and switch to a user level handler

Arap Time to trap into the kernel

Agend Time to inject a message into the network

Aot Time to return from a trap

JAVIRY Time to return from an interrupt

Agelay | Total time a user application is delayed

Aresp Shortest possible response time for a handler

Handler in Kernel

We now examine the same example under the assumption that the handler can be
executed while in kernel mode. Figure 2.3 shows the timing diagram.

As before, the currently running user application is interrupted when a message
arrives. The node switches context at a cost of A;,; and enters kernel mode. It
takes A, time to receive the message into main memory. Now, however, executing
the handler is a simple and cheap function call. The handler performs the same
operations as before. When it sends a message, it simply calls the appropriate
function in the kernel.

This method saves the time of a context switch to the handler, a trap into the
kernel to restore the originally running process, and the two traps and returns to
send the messages:

Asa'ued = Aswitch + Atrap + Q(Atrap + A1"et)

We will see in Section 2.2 that safely executing a user defined handler in the kernel
costs additional time. It is the goal of this work to establish how much overhead is
imposed by the various techniques to execute handlers in kernel mode and compare
that to Aggyeq and other benefits of this approach.

The saving of two traps and returns, 2(Ag.qp + Ayer), is specific to our example.
For handlers that require more traps into the kernel, the time savings would further
increase. For handlers with fewer kernel requests, the time savings could decrease
to as little as

Asaved = Agwiteh + Atra,p

Most handlers require at least one system call to send a reply.

2.1.2 Mapped Network Interface

Systems such as the Thinking Machine CM-5 and the Meiko CS-2 have the capability
of mapping the network interface into the user address space. This mapping requires
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L Adelay
Aresp
handler
user — >
Aint Arcv Areti
Asend Asend
—>

Figure 2.3: Restricted Access to the Network Interface, Han-

dler in the Kernel: An arriving message interrupts the currently

running user application. The kernel, in supervisor mode, receives

the message and deposits it into a buffer. Immediately thereafter, the

handler starts running. To send messages, the handler simply calls

the appropriate kernel function. A return from interrupt resumes
execution of the user application.

that the interface accept and interpret application relative virtual addresses or that
the interface represents the endpoint of a virtual channel (FIFO) that can be read
from or written to, a single word at a time. The advantage is that messages can be
received and sent by user level applications with no expensive traps into the kernel.

Handler at User Level

Figure 2.4 shows the flow of execution under these circumstances. While polling the
network interface on an architecture that allows user access to the interface is the
simplest way to low latency, we assume that an incoming message interrupts the
currently running process. This interrupt is necessary to guarantee response time
and corresponds to the two other architectures described in this section.

An incoming message interrupts the currently running process. The kernel in-
vokes a generic handler that reads the message into a buffer. The handler runs
in non-privileged mode and accesses the network interface directly. Depending on
the message content, the generic handler then calls the appropriate specific handler.
This is a simple function call and does not require the saving and restoring of a
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Adelay
Aresp Areti
Arz:v
handler
user >
Aint Asend N Atrap
Aswitch Asend

Figure 2.4: Mapped Network Interface: An arriving message in-
terrupts the currently running application to activate the handler.
The handler can receive and send messages without trapping into
the kernel. A single trap is necessary at the completion of the han-
dler to return execution control to the interrupted application.

context.

The handler is the same as in the previous examples, except that no traps into
the kernel are necessary to send messages. A single trap at the end is needed to
restore the originally running process.

Handler in Kernel

Figure 2.5 shows the situation where the handler is executed in the kernel. Again,
the arriving message triggers an interrupt and forces control flow into the kernel.
The kernel receives the message into a buffer and then simply calls the appropriate
handler. The handler does its processing and sends its two messages. A return from
interrupt leads back into user mode where the interrupted application resumes.

Since the network interface is accessible from user mode, no savings are possible
by executing the handler in the kernel. However, a context switch to the handler
and a trap to restore the original context can be avoided. The saved time is:

Asaved = Aswiteh + Atra,p
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L Adelay
Aresp
handler
user —
Aint Arcv Areti
Asend Asend
—>

Figure 2.5: Mapped Network Interface, Handler in Kernel:

An arriving message interrupts the currently running process. The

kernel receives the message into a buffer in main memory and calls

the handler without a context switch. The handler executes and

sends its two messages. A return from interrupt resumes execution
of the original user application.

2.1.3 General Purpose CPU as a Message Coprocessor

The Intel Paragon as well as the Pentium Pro based Teraflop computer to be installed
at Sandia National Laboratories have the ability to dedicate a general purpose CPU
to the task of sending and receiving messages. The CPUs share the memory bus
with the DMA units and the network interface. A snooping cache coherency pro-
tocol ensures the integrity of data in the caches and main memory. In the message
coprocessor mode, one CPU remains at the user level executing application code,
while the second CPU remains in kernel mode polling the network interface. The
two CPUs use a mailbox in shared memory to exchange information. For this to
be effective, the second CPU cannot execute code in user mode. For our purposes,
we let the second CPU interrupt the first one when it is time to run a handler.
Figure 2.6 shows the execution flow.

Handler at User Level

The polling CPU detects the arrival of a message and receives it into main memory.
Then it sends an interrupt signal to the user CPU to force a context switch. The
user CPU executes the handler and, at the end, traps into the kernel to restore
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the original context. To send a message, a handler on the user CPU deposits a
send request in a shared mailbox. The message coprocessor uses that information
to perform the actual send. Therefore, the processing performed by one CPU and
the message sending performed by the second CPU can overlap.

Adelay

A Areti

resp

A

'switch

>

Figure 2.6: General Purpose CPU: An arriving message is read

into a buffer by the CPU dedicated to message transfer. It then

interrupts the CPU running the user application so it can perform a

context switch to the user level handler. Messages between CPUs are

sent by exchanging information through a mailbox in shared memory.

The dedicated CPU performs the actual send. A trap on the first
CPU is necessary to restore the original context.

Handler in Kernel

Figure 2.7 illustrates the situation with a dedicated CPU performing message passing
as well as executing the handler. At no time is the currently running process on the
user CPU interrupted! Without considering the time savings derived from running
the handler on a separate CPU, we get the following result:

Asa'ued = Aint + Aswitch + Atv"a,p + Areti
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_resp

handler

Figure 2.7: General Purpose CPU, Handler in Kernel: An ar-

riving message is read into a buffer by the CPU dedicated to message

transfer. It then executes the handler. The user process running on
the other CPU is never interrupted!

2.1.4 Analysis

In all three architectural models a saving of at least Agypeq = Agwiteh + Atrap 18
possible. Context switch and trap times on a RISC CPU such as the Intel i860 used
in the Intel Paragon, can be considerable. Saving and restoring the floating-point
pipeline state is especially costly, bringing the total cost to several tens of micro
seconds.

We anticipate that most handlers are short and will execute quickly. In these
cases, some overhead to safely execute a handler in the kernel can be easily tolerated.
However, if the overhead of executing a handler in the kernel becomes larger than
Agaved, it would be better to run the handler at user level.

Figure 2.8 illustrates the relationship between a handler in the kernel and one at
the user level. The handler at the user level pays an up-front cost of at least Ayq¢up
before it starts executing. (Agqpeq varies with the handler and the method used to
execute a handler in the kernel. Agq4yp is constant for a given operating system.)
A handler running in supervisor mode has to be prevented from gaining privileges
that it would not have if it ran in user mode. The methods used to prevent handlers
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from gaining privileges, impose an overhead and make the kernel handler execute
more slowly. The differences in execution speeds are represented by the different
slopes of the two curves. There is a crossover point after which the overhead of
executing the handler in the kernel exceeds the time taken by the user level handler.
Therefore, if the amount of work a handler has to do exceeds a certain threshold,
then it is better to run the handler in user mode.

time - kernel level
A
handler
\ user level
handler
A : .
I e onerhez:ad - -7
o ,f’:/
2 /’/
5
(2] o
< =
e : > work
cross-over
point

Figure 2.8: User Level and Kernel Level Handlers: A handler

in the kernel runs slower because of the overhead to ensure integrity

of the system. A user-level handler pays a cost up front (Agariup)

but then executes faster because no memory access checks are needed

for example. The overhead to run in the kernel accumulates until it

becomes larger than Agyp4yp. At that point a handler should be run
at user level.

Agtartup 18 determined by the hardware and the operating system. The overhead
of running a handler in the kernel is determined by the method used to ensure the
integrity of the system. In the next section we will look at various methods to run
handlers in the kernel. We find that each method has its own overhead, dependent
on the amount of work (number of instructions) and the type of work (load and
store versus computation) a handler performs.

In Figure 2.9 we give a hypothetical example of how the various methods of
running a handler in the kernel compare to running the handler at user level. Since
the overhead characteristics for each method are dependent on the instruction mix



2.1. COST MODEL 15

of the handler, an analysis would have to be done for each handler of interest.
The varying slopes of each step of each curve represent memory accesses and CPU
internal instructions. The cost for the two types of operations are different in each
method. Memory access patterns are also different, giving each method a unique
execution profile for a given handler. Since the amount of work a given handler
performs is bounded, it will be possible to determine the method that executes a

given handler the fastest.

time

user level %

handler \

\ method 1

A
\ method 2
\ method 3

Astartup

Figure 2.9: Example of Kernel Handlers: Depending on the

method chosen and the particular handler, the time it takes to do a

given amount of work will change. Choose the method that requires

the least time for a given handler. Agsqr4p is the cost to get a handler
started in user space.

The class of handlers described in the examples of Section 1 share two common
characteristics: they are short and use simple operations. It is possible that for
this class of handlers one of the methods described in the next section executes
fastest most of the time. We will perform measurements under the Puma operating
system running on an Intel Paragon and the DOE Teraflop system to characterize
the execution profile of this class of handlers and find the method that is best suited

for these handlers.
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2.2 Kernel Embedded Handlers

The idea of executing user code (a handler) in kernel mode is not new. In Chapter 3
we will discuss previous work in this area as well as other approaches to avoid costly
context switches. In this section we discuss four software approaches for user level
handlers in the kernel.

All four methods deal with the problem of protecting the integrity of the system
from user code that is running inside the kernel with supervisor mode privileges.
Specifically, a handler running inside the kernel must not be able to access memory or
memory mapped devices that it cannot access when run in user mode. Furthermore,
privileged instructions that cannot be executed in user mode must not be executed
by kernel embedded handlers. The running time of a handler also needs to be
restricted to limit processor resource use on behalf of a user process. We call these
restrictions privilege restrictions. The methods described in the following sections
either enforce these privilege restrictions, or ensure that a handler voluntarily follows
them.

Common to all methods are the following steps. At code insertion time a user
level handler is inserted into the kernel and associated with an event. When the
event occurs, the handler is executed inside the kernel without a context switch
to user mode. During code insertion the kernel may perform a method-specific
inspection and link step. The code is then stored inside the kernel where it cannot
be altered by the user. For each method, we describe the steps performed during
code insertion and how the privilege restrictions are enforced or guaranteed during
execution.

The first method, software based fault isolation, comes in two flavors: sandboxing
and segment matching. Sandboxing forces all memory accesses to specific memory
segments called the sandbox?. Segment matching checks each memory access and
reports an error if an attempt to access memory outside the sandbox is detected.

The second approach is to trust a compiler to produce code that does not mis-
use any of the privileges gained by running in supervisor mode. Code produced by
the trusted compiler is assumed to not violate the privilege restrictions. Software
based fault isolation and the trusted compiler approach have attracted much atten-
tion recently with the advent of extensible operating systems such as the MIT Exo
kernel [28] and SPIN [7, §].

A third approach, interpretation, is currently out of fashion based on the ex-
pectation that interpretation is too slow [86]. On the other hand, interpretation is
enjoying a comeback in the form of Java, a byte code interpreted language. Java is
used to create applets that are sent across the World Wide Web (WWW) [63, 36].
Although not executed in kernel mode, applets cannot be trusted since origin and
content are unknown at the time of execution. Applets can access files on the client,
connect to other hosts, and send mail with the same privileges as the user who down-

2As Charlie Crowley points out, the term sanboxing is misleading to a parent. A playpen is
used to keep children within a given space. A sandbox does that only when the children cooperate.
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loaded the applet. This ability poses a safety hazard. Java bytecode is interpreted
in software to protect against such unwanted activities of an applet.

The fourth possible approach to embed a handler inside a kernel is code inspec-
tion. If the kernel can formally verify that a given function does not violate the
restrictions imposed on inserted code, then the kernel can execute that function
safely.

2.2.1 Software Based Fault Isolation

Sandboxing, the first form of software based fault isolation, derives its name from the
idea of isolating a user program in a sandbox where it can execute safely without the
possibility of damaging anything outside the sandbox. Like hardware implemented
memory protection, sandboxing ensures that unsafe instructions cannot access mem-
ory outside the sandbox. The idea is presented by Wahbe et al. [102], where the
authors consider write and jump instructions as unsafe. However, as Small and
Seltzer [86] point out, read operations must also be regarded as unsafe, since some
hardware devices change state when they are read. Of course, privileged instructions
such as reset, instructions that change the memory access privileges, instructions
that disable (the watchdog timer) interrupts, and illegal instructions must be pro-
hibited. Sandboxed code has to be inspected during code insertion. There is no
need to trust the compiler to have done the sandboxing correctly.

A sandbox consists of two memory segments. One for text and the other for
data. The segments are aligned such that the upper n bits, the segment indez, of all
addresses in each segment are the same. During compilation, code is inserted before
each unsafe instruction to prevent access to locations outside the allocated segments.
This code sequence forces the upper n bits of the unsafe instruction address to be
the same as the segment index. This prevents any reads and writes outside the data
segment and prevents jumps to locations outside the text segment.

Figure 2.10 and Figure 2.11 illustrate examples of sandboxing a load and a jump
instruction. The Intel i860 instruction to the left is sandboxed by the instruction
sequence to the right. Five dedicated registers are used. Two are needed for load
and stores (Tjc, Tdata_seg), two for jumps (Tiargets Tcode_seg), and one can be shared
by all sandboxed instructions (ry,ask). T'mask can be shared if the segment index is
of the same width for both the data and the code segment. The inspection that is
performed during code insertion has to ensure that the dedicated registers are not
modified outside the sandboxing sequence.

Segment matching is the second form of software based fault isolation. It is
an extension of sandboxing and allows pinpointing the location of an offending
instruction and simplifies debugging. Instead of simply forcing the upper n bits
to be the same as the segment index, the n bits are compared with the segment
index. If they are the same, it is safe to execute the instruction. If not, execution
flow branches to an error handling routine that can output detailed information and
abort the offending procedure. Figures 2.12 and 2.13 illustrate segment matching.
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addu Off, r;, Tioc
// Cale location (must not
// be in a branch delay slot)

1d.1 off(ri), 4 and Tipes Tpmasks Tloc
// off is a register or a // Clear segment index
// 16 bit address offset OF Tiocs Tdata_segs Tloc

// Set data segment index
1d.1 O(rloc): Iy
// Use sandbozed address

(a) Normal Code (b) Sandboxed Code

Figure 2.10: Sandboxing a Load Instruction in i860 Assem-
bly: Tiask»> Tioe, and Tggiq_seq are dedicated registers the user code
cannot use.

and Tyask> Ti> Ttarget
// Clear segment index

bri r; OT Tiqrgets Tcode_segs Ttarget
// Set code segment index
bri Ttarget

// Use sandbozed address

(a) Normal Code (b) Sandboxed Code

Figure 2.11: Sandboxing a Jump Instruction in i860 Assem-
bly: Tiusks Tiargets and Teode seq are dedicated registers the user
code cannot use.

To prevent self-modifying code, two segments are needed. One for data (static,
heap, and stack), and one for the code. Load and store instructions are restricted to
the data segment, while branch instructions have to stay in the code segment. Note
that branches into any part of the sandboxing code are possible and the sandboxing
code has to be written in such a manner that none of the dedicated registers can be
compromised. Both software based fault isolation techniques require five dedicated
registers. (Under certain conditions it is possible to save one register in the segment
matching case.) On a RISC CPU with 32 general purpose registers, this is not
a big problem. On a CISC architecture, such as the Pentium Pro, with only 8
general purpose registers, the techniques can still be used, albeit at the cost of slower
performance. In the case of the Pentium Pro which has segmentation registers,
it would be interesting to compare the cost of using segment registers instead of
software based fault isolation.
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addu Off, r;, Tioc
// Calculate target address

and Tyasks> Tlocs Ttmp

1d.1 off(xri), ry // Retrieve segment index
// off is a register or a XOT Tymp, Tdata_seg
// 16 bit address offset // Comp with data seg index
bc error

// report error
1d.1 0(ryee), T4
// Safe: execute load (store)

(a) Normal Code (b) Segment Matching Code

Figure 2.12: Load Instruction With Segment Matching in i860

Assembly: r,,45k, Tioe, and Tygpe seq are dedicated registers the

user code cannot use. Ty, is a temporary register that can be used
outside the segment matching code.

The authors of [102] report an average fault isolation overhead of 4.3% in a
variety of benchmarks, isolating writes and jumps only, and allowing reads from any
location of mapped memory. This agrees with the reported 3% to 7% in [96].

The insertion of the sandboxing or segment matching instructions before each
unsafe instruction can be done at compile time or at the time the code is inserted
into the kernel. In the former case, the kernel has to ensure that the function has
been properly sandboxed. Wahbe et al. present an algorithm to do that [102]. The
algorithm ensures the following:

All jumps, PC relative or absolute targets, are within the code segment.
Register indirect jumps are sandboxed and use the dedicated register ryq ges.
All direct memory accesses are to addresses within the data segment.

Register indirect memory accesses are sandboxed and use the dedicated regis-
ter 1yyc.

The handler does not contain privileged or illegal instructions.

None of the dedicated registers (rjoc, Tdata_seg) Ttargets Ycode_seg) T'nask) Are up-
dated outside the sandboxing codes.

To limit running time, a watchdog timer is used. The timer is set at the time the
handler starts executing and terminates the handler if it goes off before the handler
has finished.
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mov T, Tigrget
// Move target into dedicated reg

and Tyasks> Ttargets Ttmp
// Retrieve segment index

bri r; XOT Tymp, Teode_segs TO
// Comp with code seg index
bc error

// report error
bri Ttarget
// Safe: execute jump

(a) Normal Code (b) Segment Matching Code

Figure 2.13: Branch Instruction With Segment Matching in

i860 Assembly: 1,45k s Tiarget, and Tepge_seq are dedicated registers

the user code cannot use. ry,, is a temporary register that can be
used outside the segment matching code.

2.2.2 Trusted Compiler

An approach that is currently being investigated as part of the SPIN project is to
trust the compiler to generate code that obeys the privilege restrictions. There are
two possibilities for a kernel to trust the compiler. If the compiler is a stand-alone
tool, as is usually the case, it has to “sign” the generated binary in such a manner
that the kernel can be sure that only the trusted compiler could have generated this
particular binary. This requires code in the kernel to verify the signature.

The second method is to make the compiler part of the operating system. One
problem with the trusted compiler approach is that that the amount of trusted code
grows significantly. The size of the Puma kernel, for which we are considering kernel
extensions, is about 75 kB, while the size of a typical compiler is usually measured
in mega bytes. Furthermore, the runtime systems of high-level languages can be
large. For performance reasons, the runtime system has to stay resident in physical
memory taking up valuable space.

In some sense, all operating systems trust the compiler that was used to compile
them. With the trusted compiler approach the operating system places an additional
kind of trust on the compiler. The operating system now assumes that the compiler
not only produces correct code, but also code that does not violate the privilege
restrictions. It is up to the compiler to reject code that might access memory that
is accessible in kernel mode but not user mode.

For this approach, code insertion consists of linking the code into the kernel and,
depending on whether the compiler is part of the operating system or not, verifying
the identity of the code producer.
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2.2.3 Kernel Embedded Interpreter

Perhaps the simplest approach, at least conceptually, is interpretation of the user
code. A kernel embedded interpreter can validate each instruction before executing
it and easily guarantee that the privilege restrictions are obeyed. Time bounds can
be enforced by simply counting the number of instructions executed (weights could
be assigned to each instruction if execution times vary widely).

Interpretation has been successfully employed in a variety of situations [66, 61,
36], but is generally considered to be slow or only applicable if the input language can
be sufficiently restricted. For the handlers anticipated, we believe that interpretation
is ideal. The handlers are small and perform simple tasks. It should be possible to
gather the most often used constructs and sequences into a virtual machine which
can be optimized to execute efficiently [76, 78]. Then, using indirect threaded code or
direct threaded code techniques, build an extremely fast interpreter [6, 21, 49, 31].
These techniques have been used to implement the Forth language [79]. The B
(a predecessor to C) compiler for the PDP-7 generated threaded code [81] as did
the Fortran IV compiler for the PDP-11 [6]. The object oriented language Actor
is based on token threading [23]. QuickBasic 4.0 is based on a threaded P-code
interpreter [101]. The handler code is threaded during code insertion.

It is one of the goals of this work to design a virtual machine that is general
purpose, yet highly optimized to the interpretation of code that is produced when
compiling handlers.

2.2.4 Code Inspection

Under certain circumstances it is possible to inspect a binary image and guarantee
that it obeys the privilege restrictions. A control flow analysis must be performed
to ensure that no branches outside the handler take place. In order to limit the
run time, loops are required to have fixed starting and ending values and backward
branches (and register indirect branches) are disallowed. Register indirect memory
accesses have to be done by a routine within the OS that verifies that the access is
legal. Essentially, register indirect memory accesses are interpreted [20].

We feel that the restrictions which would have to be placed on code so it can be
inspected (in finite time!) are too limiting for the types of handlers we anticipate.
For this reason, we will not consider code inspection any further.

A variation of this is proof carrying code [68]. The code to be inserted carries
a proof that it does not violate the policies set forth by the executor (the kernel in
our case). The proof should be easy to verify and guarantee that the code is safe to
execute. This research is still in its very infancy, but might be applicable to small
handlers.



Chapter 3

Related Work

Reference to and comments upon relevant work by others on the same or
similar problems [55].

The high cost of protection domain crossings, especially from user-level into
the kernel, has been well documented [65, 71, 2, 62]. Often, a mismatch between
modern microprocessor architectures and the changing needs of newer operating
systems is cited as the main reason. Hardware, as well as software solutions, have
been proposed to alleviate the problem [22, 14, 43, 19, 54, 13, 56]. While some
of the achieved improvements are significant, there is still a cost associated with a
protection domain crossing. If that cost is high enough to cover the overhead of
safely executing untrusted code in the kernel, then kernel extensions have merit.
Otherwise, up-calls to the user level are more appropriate.

The research proposed builds on work done in several areas. In Section 3.1
we investigate several existing methods to send a message to a remote node and
let a user-specified handler execute on the remote node when the message arrives.
Essentially, all suffer from too high overhead or inflexibility. In Section 3.2 we look
at operating systems that allow user processes to extend the kernel by inserting
code. All of the extension methods described in Section 2.2 are used in one form or
another. The goal of this research is to compare them and find the one that is best
suited for our applications.

In Section 3.3 we look at two examples where hardware is used to solve the
problem of high overhead in the start-up and execution of remote handlers. Since
code is inserted into the kernel at runtime, research in the area of dynamic code
generation is also of interest to us. We briefly discuss it in Section 3.4. Finally, we
explore several areas related to interpreters in Section 3.5.

3.1 Remote Handlers

Remote handlers are used extensively in client-server applications and network file
systems. With the advent of high-speed and low-latency networks it has become

22
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apparent that the software overhead required to transfer messages has to be reduced
significantly to take advantage of the new hardware technologies. We look at active
messages, Intel NX, and Puma portal event handlers in MP systems, as well as
methods employed in workstation environments.

3.1.1 Active Messages

Active messages were introduced in [100] and have enjoyed considerable atten-
tion [98, 103, 80, 57, 89]. Especially on the CM-5, where the network interface
can be mapped into the user’s address space, active messages have a very small
overhead compared to traditional message passing. This translates into very low
message latencies. However, there are some characteristics that make active mes-
sages unsuitable as a general solution to the problem of fast responding handlers.
For example, bandwidth is adversely affected by the necessity to always run a han-
dler. A data transfer method that moves data without invoking a handler will get
better bandwidth.

Most active message implementations use polling to achieve the low latencies
reported in the literature. Adjusting the polling frequency introduces a tradeoff
between fast response time and amount of overhead attributed to unneeded polling.
In some cases polling complicates a program and in others it is not appropriate. For
example, in a compute intensive application that spends much of its time in libraries
such as the BLAS, polling can only occur between calls to the library; hence, handler
response time is poor. Interrupt driven implementations of active messages suffer
from context switch overhead.

Originally, active messages were designed for communication among the nodes of
the same application. Sending the actual start address of a function combined with
non-existant protection and recovery mechanisms, make active messages unsuitable
for use between arbitrary applications, servers, and machines.

A new organization and application programming interface remedies the short-
comings of the original active message design [58], and tries to bring active messages
into the mainstream. In principle, the receive part of an active message endpoint
as described in [58] resembles a single block Puma portal with an attached handler.
The handler is executed when the data has been deposited into the portal. A single
block Puma portal consists of a memory descriptor specifying the start address and
the length of a memory segment where data is to be stored or retrieved from.

This new model addresses security and flexibility concerns but only offers the
traditional choices to handle incoming messages: polling or interrupt driven with
the handler in the user’s address space.

3.1.2 Intel NX

NX is the message passing system used on the Intel Paragon and its predecessors [73,
74]. The hrecv () function behaves much like an ordinary receive with the exception
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that, upon message arrival, a user specified handler is invoked. The mechanism is
interrupt driven and a full context switch to the handler occurs on message reception.

To measure performance, we used a simple benchmark that posts an hrecv()
and then waits for a global variable to change. The handler that is invoked by
hrecv() increments this variable and returns. (This is a measurement of A,g).)
Averaged over 10000 trials, we measured an invocation time of about 300us. The
same measurement for an irecv(), a non-blocking receive without a handler, yields
14us. Figure 3.1 shows the pseudo code of our benchmark.

In both cases the receive is pre-posted and the receiving node spins in a tight
loop at user level, waiting for the incoming message. The incoming message causes
an interrupt and the operating system kernel reads the zero length message from
the network.

To process an hrecv(), the kernel switches context to the handler, executes it,
and does another context switch to the original user program. The handler sets the
global variable gotit to TRUE. Inside the loop, the test program checks the global
variable to determine when the handler has run. While the test program spins inside
the loop, it produces a series of time stamps. Once outside the loop, it is easy to
determine the time stamp from just before the interrupt took place. The gap to the
next time stamp is larger (> €) than the gaps measured in successive, uninterrupted
loop iterations. The constant e is larger than the overhead of a clock() function
call, but less than the interrupt time: (clock()p - clock)y) < € < (Ajnr+Averi)

In the case of an irecv(), the kernel simply returns to the user level. Inside
the loop, the test program uses msgdone () to know when the message has arrived.
Again, a larger gap between time stamps reveals the one just before and the one just
after the interrupt has been taken. The high cost of hrecv() makes it impractical
to use in the contexts proposed for this research.

3.1.3 Puma Portal Event Handlers

Puma [105, 84] is an operating system specifically designed for high-performance
MP architectures. On each node, the systems consists of a minimal kernel (the
quintessential kernel), a process control thread (PCT) which is a trusted user-level
process that establishes the policies on the node, and the libraries linked with each
application.

Puma portals are openings into the applications’s address space. Data struc-
tures, shared between the kernel and the user determine where incoming messages
are to be deposited. The shared data structures consist of a portal table, matching
lists, and memory descriptors. With the appropriate combination of these basic
building blocks, a user-level process can describe the actions the kernel is to per-
form upon arrival of a message. Portals allow the construction of most higher-level
message passing protocols in user space without costly memory-to-memory copies.

When a message arrives, the data and its header are placed into memory ac-
cording to the application’s specification in the portal structures. If a portal event
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main()

{

loop {

if node 1 is ready then

break

}

send zero length msg to node 1

(a) Node 0

25

handler()

{
}

gotit = TRUE

main()

{

gotit = FALSE
hrecv(handler, ...)
t1 = t9 = clock()
loop {
t1 = clock()
if gotit then
if to + € > t1 then
ty = clock()
break
ty = clock()
if gotit then
if t1 + € > ty then
t1 = clock()
break

}

if £ > t9 then
time = t1 — t2
else
time = t2 — tl

(b) Node 1

Figure 3.1: hrecv() Benchmark: Measure the time from message
arrival until start of the handler (A,y)).
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handler has been installed, then the kernel will transfer control to a user-level master
handler. The master handler can be replaced by the application and is responsible
to dispatch events to event handlers. This is similar to active messages, except that
the data already resides in memory. Invoking the handlers requires a context switch
from kernel to user level.

3.1.4 Workstation Environments

Workstation networks and interfaces are approaching the performance characteris-
tics of MP systems [93]. However, network protocols have not kept up with this
trend [1]. Illinois Fast Messages [72] and U-net [99] are two examples of approaches
to reduce the software overhead.

Fast messages (FM) recognize the need of overlapping communication with com-
putation, precise control of the hardware involved (busses and network interface),
and efficient buffer management. Using Myrinet interfaces, this approach goes as
far as replacing the program in the network interface coprocessor (LANai) with one
that is specific to the FM protocol. Data is moved directly into user space, avoiding
a costly memory-to-memory copy. The protocol further assumes a reliable network
and puts the burden of message content verification (checksums) onto higher level
layers. (Measurements under Amoeba indicate that user level protocols incur only
small additional costs, but provide increased flexibility [70].)

The U-net approach is to map the network interface into user space and avoid
protection domain crossings for message transfers. To send or receive a message,
the kernel does not have to be invoked.

Both FM and U-net lower message passing latencies, but do not directly address
the problem of handler response time. In both cases, a polling user application can
quickly respond to user messages. A general, interrupt driven solution still has a
high cost associated with it.

3.2 Extensible Operating Systems

An extensible operating system lets an application apply certain customization to
tailor the operating system’s behavior to the needs of the application. Applications
running on personal computers have been taking advantage of the non-existing pro-
tection mechanisms in MS-DOS and the Apple Macintosh operating system to ex-
tend the operating system. For example, intercepting keystrokes and mouse events,
as well as writing to screen memory directly is possible. These simple operating
systems are not able to protect themselves or other applications from buggy or
malicious user code.

Many variants of the Unix operating system allow a trusted user (the system
administrator) to modify the running system by adding new device drivers and kernel
services such as different file systems. Flexibility is lost, since the applications cannot
dynamically adjust the system to their needs anymore. Furthermore, the operating
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system still has no way of verifying that the extension will not harm the system or
other applications.

Current research in extensible operating systems tries to address these issues.
The goal is to let applications safely modify system behavior. For example, it
should be possible for an application to specify its own memory page manager. The
kernel would call this page manager when the system needs to reclaim memory
pages currently allocated to this application. The application specific page manager
can then decide which pages should be given up. For this to be efficient, the page
manager needs to reside inside the kernel, so no expensive cross-domain calls are
necessary to evict memory pages. The page manager has to be isolated so it can
not disrupt other kernel services or wreck havoc with the page handling of other
applications.

Several recent systems use the methods presented in Section 2.2 to enable such
extensions. In this section we look at SPIN, the MIT Exo kernel, GLUnix, VINO,
and pChoices.

3.2.1 Spin

SPIN [7] is an extensible operating system that allows kernel extensions, so called
spindles, to be inserted dynamically. Spindles as well as SPIN itself, are written in
Modula-3, a type-safe object oriented programming language. The use of a type-
and pointer-safe language prevents spindles from calling services inside the kernel
that have not been specifically exported. The language makes it also impossible to
access memory that is not part of an object to which the spindle has been given
explicit access.

As long as the Modula-3 compiler is trusted to implement the language specifi-
cation faithfully, and only spindles generated by this compiler are accepted, SPIN
is safe from malicious code. The compiler runs at user level and is the only process
that is allowed to insert spindles into the kernel. Only spindles generated at runtime
can be inserted into the kernel. This eliminates the need to cryptographically sign a
spindle, but has the drawback that the time to compile and optimize a spindle has
to be expended for each spindle insertion. Dynamically linking a spindle into the
running kernel also takes time. It is assumed that the time savings and flexibility
of having the spindles execute inside the kernel compensate for this overhead.

3.2.2 Exo Kernel

The MIT Exo kernel [28, 27, 29] is an extreme approach to operating systems design.
It attempts to lower the operating system interface to the hardware level, eliminating
all abstractions that traditional operating systems provide, and concentrating on
multiplexing the available physical resources.

All work traditionally done inside the kernel to provide abstractions, such as
memory mapped I/O and complex thread packages, is moved into application-level
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software layers. The kernel simply allocates, deallocates, and multiplexes physical
resources, for example memory, time-slices, access to I/O devices, disk storage,
etc. This is similar to the Puma kernel approach, where many of the abstractions
are pushed into the PCT (Process Control Thread) or user-level libraries. The
Exo kernel takes this to an extreme, since all abstractions are removed from the
kernel and no privileged user-level processes, such as the PCT, are allowed; every
abstraction is provided by the application (usually in the form of a library). This
allows applications to customize abstractions, choose the best fitting one among
several, or circumvent libraries that are not efficient enough for the task at hand.

In principle, there should be fewer traps into the kernel, since most of the OS
functionality is at the user-level. The traps should also be cheaper, since there are
fewer services to dispatch inside the kernel. For cases such as TLB miss handling,
user-level code can be inserted into the kernel. A combination of code inspection
and sandboxing is used to insert untrusted user code safely into the kernel.

3.2.3 GLUnix

The Global Layer Unix (GLUnix [97]) system uses software-based fault isolation
(SFI) to move operating system functionality into user level libraries. User applica-
tions are linked with the operating system libraries, and system calls are converted
to function calls into these libraries. Proponents of GLUnix claim that the cost of
SFT is offset by not having to trap into the kernel for every system call.

The GLUnix libraries will provide a single system view of a network of work-
stations, even though the individual workstations run a standard operating system.
This approach is limited by the functionality exported by the underlying operating
system. Furthermore, to send and receive messages, the services of the operating
system kernel are required. Since the goal of GLUnix is to use vendor supplied
operating systems and use them unchanged by building additional functionality in
a layer that sits on top of the operating system, there is no possibility of inserting
user handlers into the kernel, unless the underlying operating system supports that.

3.2.4 VINO

The VINO kernel [85, 82, 83] is designed as a platform for database management
systems. From the outset, VINO is designed to let applications specify the policies
the kernel uses to manage resources. A further goal is to make kernel primitives
accessible to the user level. For example, synchronization functions the kernel uses,
might be useful to applications as well.

Applications establish a resource management policy by inserting a graft into
the VINO kernel. Grafts are written in C or C++. The compiler inserts range
check instructions for all memory accesses, similar to segment matching in Wahbe
et al. [102], and ensures that no privileged instructions, such as the disabling of inter-
rupts, are issued. The generated code is then marked with an encrypted fingerprint
(signature) that is verified by the kernel during code insertion.



3.3. HARDWARE SOLUTIONS 29

Since grafts are used to implement policies, access to kernel functions and data,
for example locks, is a must. To prevent a graft from holding a lock indefinitely,
transaction techniques are used. If a graft has to be aborted because of an error or
because it ran too long, its actions can be undone and locks held by the graft can
be released.

As in SPIN, some trust is placed into the compiler. To avoid a type-safe language,
software based fault isolation is used to protect against illegal memory accesses.

3.2.5 pChoices

In the uChoices operating system [11, 92] so called agents can be inserted into the
kernel. Agents are written in a simple, flexible scripting language similar to TCL,
and are interpreted. Agents batch a series of system calls into a single procedure
that requires only one trap into the kernel to be executed. Agents use existing kernel
services and do not extend the functionality of the kernel or provide services that
are not available at user level. Agents are a simple optimizations to eliminate the
overhead of several system calls.

Methods to safely execute untrusted code in a privileged environment are com-
pared in [86]. Among the methods chosen is interpreted TCL because of its mention
in the uChoices papers. As might be expected, TCL’s execution speed is orders of
magnitudes slower than some of the other methods. Therefore, the authors claim
that interpretation in general is too slow. However, TCL interpreters are not op-
timized for speed. Furthermore, with appropriate restrictions to the language and
application of advanced interpretation techniques, it might be possible to speed-up
interpretation considerably.

3.3 Hardware Solutions

There are many projects that use hardware to make context switches and message re-
ception faster. The Stanford FLASH multiprocessor and at the MIT J-machine aim
to provide fast hardware to accommodate many different message passing paradigms
and use software handlers to act on incoming messages.

3.3.1 Stanford Flash

In the Stanford FLASH multiprocessor architecture [40, 53, 39] each node contains
a custom node controller called MAGIC. MAGIC is located between the network
and the CPU and memory. It consists of several queues and a protocol processor.
The protocol processor has instruction and data caches, independent of the main
processor on the board.

The protocol processor uses physical addresses to access main memory. Trans-
lation of virtual addresses and the necessary verifications are performed when ad-
dresses are transferred from the main processor to the protocol processor inside
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MAGIC. This gives the protocol processor the ability to transfer data to and from
main memory very efficiently without affecting the operation of the main processor.
That is, no interrupts or context switches occur on the main processor when new
messages arrive. The design is very flexible and allows the implementation of a wide
variety of protocols inside MAGIC.

MAGIC handlers directly control the message passing behavior of a node. Erro-
neous handlers executing on the protocol processors can corrupt data and crash the
whole machine. Therefore, handlers have to be created and validated with the same
scrutiny as the hardware in the system, making it impossible to run user-created
handlers on the protocol processor. It might be possible to run the R-code inter-
preter on the protocol processor. This would allow users to submit code that runs
(interpreted) on the protocol processor.

3.3.2 J-Machine

The MIT J-machine [17, 69] combines a general purpose CPU with a network con-
troller. (Similar to the nCUBE processors [67, 24].) Upon arrival of a message on
a J-machine node, the CPU dispatches a handler to process the message. The han-
dlers are fine-grained threads. Dispatching is done by the hardware and, therefore,
extremely fast (less than 1us).

In contrast to the Stanford FLASH project, there is only one CPU to handle
message traffic and user applications. On the other hand, user applications and
message processing are tightly integrated, and applications provide the threads to
handle incoming messages. From an applications point of view, this makes the J-
machine more flexible, since the protocol processor code in the MAGIC cannot be
changed by an ordinary user.

3.4 Dynamic Code Generation

Usually, executable code is generated by a compiler before the executable is loaded
and run. A technique called dynamic or runtime code generation, delays compila-
tion until the executable is already running. For example, a function to perform a
matrix multiply is not compiled into its final form until the sizes of the two matrices
to be multiplied are known. The sizes can be expressed as constants in the arith-
metic routine and the compiler can perform certain optimizations that would not
be possible if the sizes were unknown and had to be expressed as variables. Even
with the overhead of the compilation step at runtime, it is sometimes worthwhile
to consider dynamic code generation, especially in the case when a function will be
executed often, after it has been compiled once [46, 44, 45, 47, 60, 30, 26, 41, 59, 25].

Inserting code at runtime into the kernel is a form of dynamic code generation.
The application can manipulate the R-code image, or even compile a higher-level
language into R-code, before it inserts the R-code image into the kernel. For ex-
ample, a broadcast function could hard-code the destination nodes into the R-code
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image before it is inserted into the kernel. The image would be slightly different on
each node, but would not have to do any computations to determine the destinations
of a broadcast.

3.5 Interpreters

Because of their simplicity, interpreters are often employed early on as a proof of con-
cept, to be later replaced by compiled languages. Nevertheless, some applications,
such as the BSD packet filters (Subsection 3.5.4) and Java applets (Subsection 3.5.5)
over the world wide web (WWW), exploit interpreter characteristics in areas where
speed matters.

First, we look at techniques that have been developed to speed-up interpretation
(Subsection 3.5.1). Since most interpreters use a (virtual) stack machine to execute
the programs, we look at work done on implementing stack machines in Subsec-
tion 3.5.2. Many of the interpretation techniques made their first appearance in
Forth systems. We look at Forth in Subsection 3.5.3. In Subsection 3.5.4 and 3.5.5
we look at uses of interpreters in the BSD packet filter and in Java.

3.5.1 Interpretation Techniques

Interpretation has several desirable characteristics. Interactive systems benefit from
a quick turn-around time and the extensibility of the interpreters themselves. For
example, interpretation of commands can begin as soon as the user starts typing.
There is no edit, compile, test cycle. Some interpreters can be extended by the user.
Forth, for example, allows the definition of new keywords by the user. These new
keywords are integrated into the running interpreter and can be used like any other
keyword predefined by Forth.

Interpreters are relatively easy to write (when compared to a compiler) and are
easy to port. Furthermore, intermediate code representation, bytecode for exam-
ple, makes “precompiled” executables very small. Often much smaller than the
corresponding source and even a compiled binary.

The only real drawback usually is execution speed. Simple interpreters are often
ten to hundred times slower than the same program written in a language such as
C or Pascal and executed as a native binary. Several techniques exist to make inter-
pretation fast. One of the earliest techniques is Bell’s threaded code technique [6].
The idea is to preprocess the code and convert language statements into subroutine
calls. In principle, this reduces the execution overhead of an interpreter to one or
two assembly instructions per interpreted statement.

Indirect threaded code [21] adds a level of indirection and makes the technique
more portable. Kogge [49] reviews threaded code techniques and compares them. He
finds that performance penalties for threaded code versus direct assembly coding are
about 1.2:1 for minicomputers. A paper by Paul Klint [48] compares interpretation
techniques. He finds that instruction fetch time of direct threaded code is faster
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than indirect threaded code. Both threaded code techniques are much faster than a
traditional interpreter that uses opcode tables. As the complexity of the interpreted
instructions increases; i.e. the subroutines that implement the instruction become
larger and more complex, the less relevant the instruction fetch time becomes.

Cint [18], a C language interpreter, shuns threaded code techniques, claiming
they are machine dependent. Instead, Cint relies on a minimal (RISC) virtual
machine for speed. The instruction set consists of 49 executable instructions and 14
pseudo-operations. The overhead of executing a C program under Cint compared to
the execution of a compiled binary, is considerable: On average 29 times slower on a
VAX-11/780 and 36 times slower on a Sun-3/75. To avoid the machine dependency
problem, Ertl [31] uses a feature of GNU gcc [90] to generate a threaded code
interpreter from a C language source. GNU gcc extends the C language and allows
labels to be treated as values. Together with GNU gcc’s computed goto statement
it is possible to write a threaded code interpreter without resorting to machine
language. The interpreter is portable to any system that supports GNU gcc.

For our research we will use threaded code techniques. If possible, we use the
C language extensions of GNU gcc to remain as portable as possible. At the same
time we will adapt and modify R-code so that an interpreter for it can be small
and simple (like Cint), and keep the amount of computation done per interpreted
instruction high, so the instruction fetch time can be amortized [78].

3.5.2 Stack Machines

It is easy to map an arithmetic expression onto a stack-based virtual machine and
then evaluate it. Many interpreters, specifically Forth, are built on stack-based
virtual machines. To speed up execution, some stack-based designs have been im-
plemented in hardware [51]. Microprocessors have been built for the direct execu-
tion of Forth [38, 64] and are being designed for Java [52]. A large body of the-
oretical work on how to efficiently execute stack-based programs on register-based
CPUs [37, 32, 34, 33, 75] and on optimizing code for stack machines [50, 15, 10]
exists. The R-code interpreter will be stack-based and the techniques for optimizing
stack-based programs and to speed up stack-based interpreters will be applied.

3.5.3 Forth

Forth [79] is a stack-oriented language. It was first used to control telescopes and
process astronomical data. Since then, it has found a wide spectrum of uses, but
is still often used in embedded systems. For example, the boot monitor of Sun
workstations uses Forth to interact with the system administrator.

Forth interpreters are very fast. One reason for this is that Forth is relatively low-
level and gives the programmer many opportunities to optimize stack operations.
Other reasons are the innovative interpretation techniques that first appeared in
Forth. The first Forth system employed indirect threading as later described in [21].
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Forth allows a user to define new words that are dynamically integrated into the
interpreter. New words can be accessed and executed as fast as the builtin words.
Therefore, it is very easy and efficient to customize the interpreter to specific tasks
at hand.

We considered to make Forth the language that is used to interpret code inside
the kernel. We decided against it, because many features of Forth are geared at
interactive use and I/O. Stripping these from Forth would leave a language very
similar to R-code. Since we want to optimize R-code for fastest possible interpre-
tation and a well suited target language for a C compiler, we decided to start from
scratch. R-code has to evolve and, in its final form, may not look like Forth at all,
even if we had started there.

3.5.4 BSD Packet Filter

The BSD packet filter originated in the Xerox Alto. The motivation, implementa-
tion, and performance on various BSD machines is described in [66]. Packet filters
are written in a simple stack-based language and inserted into the running kernel.
For each incoming data packet, the filters are executed until one accepts the packet.
There are no branch instructions and only a rudimentary set of operations. Words
at constant offsets in the packet can be examined using comparisons and the three
boolean operators AND, OR, and XOR. No other arithmetic operations are available.

Interpretation was chosen to make it possible to move packet filters from user
space, with the associated context switches and kernel traps, into the kernel, saving
that overhead. This enhanced performance considerably. The interpreter ensures
that only words inside a packet are accessed and aborts faulty handlers (after a stack
underflow for example). In general, though, security is not enforced. Any filter can
accept any packet.

An improved version of the packet filter is presented in [61]. The instruction set
has been extended and now includes arithmetic operators such as add, sub, mul,
and div, as well as conditional branch instructions. The pseudo machine is now
register based. It consists of an accumulator, an index register, a scratch memory
store, and an implicit program counter. The authors claim that such a machine can
be simulated faster on today’s register-based RISC architectures. The performance
gain over the earlier implementation seems to validate this claim. However, it may
be that the language used in the first BSD implementation is just too simple. For
example, it is not possible to read a word from the packet, mask certain bits, and
then use this intermediate result several times in comparisons. Instead, the first
BSD implementation needs to read the same word every time and has to redo any
masking done before. The newer implementation can easily store the intermediate
result and reuse it when necessary. Therefore, the claim that a stack-based virtual
machine is not as suitable as a register-based virtual machine for modern CPUs is
not substantiated.

Performance of both BSD packet filters degrades as more filters are added, since
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each is executed sequentially and independently. With several sessions active at the
same time, many filters that differ only minimally (in matching the destination port
number for example), have to be installed. This problem is addressed in [107]. The
new filter mechanism is called MPF (Mach Packet Filter) and is an extension of the
register-based packet filter [61].

To achieve scalability in the presence of many packet filters, MPF offers a new
instruction that is reminiscent of a C switch statement. It replaces an instruction
sequence in the register-based packet filter that is used to dispatch among various
protocols. MPF collapses the new instruction present in all filters into a single, fast,
dispatch routine. Therefore, no matter how many filters are present, the common
dispatch code is executed only once. Another reason this is faster, is that several
instructions can be replaced by a single virtual machine instruction. This lowers the
overhead of virtual machine instruction dispatch.

3.5.5 Java

Java [63, 36] is an interpreted, object-oriented language with a syntax similar to
C and C++. Recently it has attracted much attention through its use in WWW
browsers. Applets, written in Java and translated into bytecodes, are made available
on WWW servers. A client, the WWW browser, fetches the applet and executes it
on the client side. Since the execution is local, applets can create graphical effects,
for example, without consuming large amounts of bandwidth to the server.

Applets can be written by anybody and made available anywhere in the world,
and cannot be trusted. The browser on the client side interprets the applet and
monitors disk accesses, network communication, and other activities of the applet.
An interpreted language is ideal for this purpose, since any desired restrictions can
be enforced by the interpreter.

Transferring untrusted applets into an environment in which execution could
cause trouble is similar to the idea of executing user code inside an operating system
kernel. Actual transfer from one node to another in an MP system is not necessary,
since all nodes with the same application have copies of the same executable. Also,
the kernel knows the user process’s owner. (This does not mean user code can be
trusted.) Java is a general-purpose high-level language. It offers many features that
are not necessary for kernel embedded handlers. While R-code should be general-
purpose, it does not need to be able to deal with an interactive user and do file I/0O,
for example.
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Proposed Solution

A statement or characterization of what kind of solution is being sought [55].

Among the four possible ways, outlined in Section 2.2, to safely introduce un-
trusted user level code into the kernel, we believe that a kernel embedded interpreter
is the most efficient and best suited approach for event handlers. Therefore, the dis-
sertation will attempt to prove the following thesis:

A kernel embedded interpreter is an effective way to decrease the latency
of user-level communication primitives.

It should be possible to write the handlers in C (or any other high-level language).
The handler is then compiled into what we call R-code!. During code insertion, the
kernel transforms R-code into direct threaded code. To avoid a parser and assembler
in the kernel, we transform R-code into a binary representation before it is inserted
into the kernel. The assembly of R-code into its binary representation can be done
by the application prior to insertion into the kernel, or off-line when the application
is compiled. The former has the advantage that the application can easily make
runtime changes, for example to insert constants, such as the logical node number.
It has the disadvantage that the R-code assembler has to be resident on the node.
The latter method avoids the overhead of last minute assembly, but makes it harder
to make modifications at runtime. The types of code and the transformations are
shown in Figure 4.1.

R-code has to have several characteristics. Most importantly, it has to be possible
to interpret it at speeds that are close to assembly code generated by standard C
compilers. R-code and the interpreter for it have to be able to take advantage of
certain Puma kernel characteristics, as well as exist within the limitations imposed
by the kernel (we will discuss them in the next paragraph). Another objective
for the design of R-code is that it should be relatively simple for a C compiler to

'The name R-code was chosen since P-code [106] and U-code [12] already exist. Any relationship
to the author’s initials is purely coincidental.
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C code
l’ compilation (Icc)

R-code
l, assembly

user level binary R-code
l’ insertion

kernel level threaded code

Figure 4.1: Code Transformations: From C code to threaded
code.

produce efficient R-code for the handlers we discussed in Chapter 1. We expect
R-code to evolve during this research, swinging between easy to compile to and fast
to interpret.

The Puma kernel has a few unique characteristics that have to be taken into
consideration when designing R-code. There is no demand paging under Puma.
Therefore, all memory pages are always present. This gets around the problem of
having to bring in a page for a message that is currently being received or sent. It
means that the Puma kernel can always stream messages directly into user memory,
with no need for buffering and costly memory copies. Puma portals are currently
added to the Linux kernel. The assumption that the necessary pages are always in
physical memory is no longer true in that environment. Our first implementation
requires that memory which is overlayed by a portal, must be wired down. It has
to be made unpagable before the Puma portal can be activated.

For the R-code interpreter this implies that it can be very simple and the indi-
vidual handlers can be executed to completion on each message arrival. No blocking
has to occur because of missing virtual memory pages. There will be a time limit
for each handler invocation to prevent a handler from consuming all CPU cycles of
a node in an infinite loop. While the Puma kernel is executing, all interrupts are
disabled. In Puma it is therefore difficult to enforce a running time limit on code
that is executing inside the kernel. For interpreted code it is easy however. The
interpreter simply counts the number of instructions executed and aborts after a
predetermined limit is reached.

The Puma kernel and its data structures are static in size. This means that the
room to insert user handlers is of fixed size. The stacks of the virtual machine as
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well as the data segment of the handler are of fixed size. This should not pose any
problems. The handlers and their local data will be small. Large handlers will also
run longer and belong into user space.

And last but not least, the Puma kernel is non-blocking. There are no functions
in the kernel that have to be suspended because a resource is busy. This means
that handlers have to be given a certain (small) amount of time to run and then be
aborted if that limit is exceeded. Most handlers will probably never reach that limit.
Those that do, might be better implemented as up-calls to a user-level handler. We
will determine the cross-over point, where it becomes more efficient to do an up-call
rather than using a kernel extension, when we do our experiments.

Handlers should have access to the header of the message that triggered invo-
cation of the handler, as well as the data delivered by the message. Aside from
the data stack, there should be a fixed-size data area for each handler that allows
storage of data between invocations of the same handler. Global sum operations
are an example where this storage becomes important. On the first invocation the
handler stores the value. On the second invocation it sums it with the newly arrived
value and sends the sum to the parent in the fan-in tree.

Handlers should also have access to the memory owned by the process that
installed the handler. This allows handlers to manipulate counters and set flags
inside the application. In the C code for the handler these memory references should
be marked as external. A good way of linking these references to actual memory
locations in the running application has to be found.

Handlers that fault (on division by zero for example) or attempt unsafe opera-
tions (illegal instructions or illegal memory accesses) are terminated. A return code
associated with the handler should indicate the error. For debugging purposes and
performance tuning as much information as possible about the handler run should be
made available to the application that inserted the handler. This could be achieved
by having two interpreters in the kernel: A high-performance one, and another that
logs information such as running time, register usage, external memory accesses,
etc.

The interpreter has to be very fast. We currently plan a stack-based virtual
machine which introduces the problem of mapping a stack onto a register file. There
has been some research in this area and we intend to find a good solution for the R-
code interpreter. If necessary, we may consider to change to a register-based virtual
machine. At the present time this seems unlikely, though.
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Statement of Work

A plan of action for the remainder of the research [55].

To validate that an interpreter is fast enough to support handlers inside the
kernel, we will compare a kernel embedded interpreter approach with a trusted
compiler solution as well as software based fault isolation. The measurements will
be performed using the Puma operating system. This system is currently running
on the Intel Paragon using Intel i860 RISC CPUs. It also runs on the Intel Teraflop
architecture which uses Intel Pentium Pro (P6) CISC CPUs.

Puma will be modified to let a user program install a portal event handler
at runtime. The handler can be written in R-code and will be interpreted when a
message arrives. The handler can also be a binary that has undergone software based
fault isolation. Alternatively, the handler can simply be trusted, assuming it came
from a trusted compiler. In the latter two cases no interpretation during execution
time takes place; the inserted handler is executed directly. Baseline comparisons will
be made against the standard user-level portal event handlers of Puma. A handler
that takes longer to execute inside the kernel, than the same handler at user level
including the context switch overhead, should probably be run at user level.

During the insertion of software isolated code, the algorithm described in [102]
should be applied. However, since we are mainly interested in the measurement of
execution time, not code insertion time, we will most likely forgo this verification
step.

The simplest way to integrate code from a trusted compiler, is to directly link
it into the kernel. Insertion then consists of selecting the appropriate routine to be
executed on message arrival. This is a sufficient procedure to measure execution
time of such handlers. It does not address the cost of linking and binding, nor the
runtime system overhead of a type-safe language. Linking and binding costs are
paid at code insertion and will be more or less ignored by this research. Runtime
system overhead has to be taken into consideration, though. All handlers, whether
trusted, interpreted, or software fault isolated, should be represented by the same C
source to make the comparison fair. To estimate the runtime system overhead of a
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type-safe language, we will modify the C compiler to insert instructions that model
bounds checks.

We will measure the performance of representative handlers for broadcast, MPI,
Split-C, and Cilk. Ideal test conditions require that the same source code is used
for each handler in any of the three insertion methods. For this reason we will use
the retargetable C compiler lcc [35], and modify it in the following manner.

For the first experiment, we will retarget lcc so that it produces R-code. R-code
will be the same for the i860 and x86 architecture. There exists already a back-end
for lce that produces x86 code. A member of the Puma team is currently building a
back-end for the i860. For the second experiment, these back-ends will be modified
to insert software isolation code before each load, store, and jump instruction. This
will produce software isolated code. For the third set of experiments we will modify
the x86 and i860 back-ends to introduce range checks, and other runtime checks
typically performed by the runtime environment of a type-safe language such as
Modula-3 used in the SPIN project.

Therefore, the same compiler (with different back-ends) will be used to generate
code for all three techniques on a RISC and a CISC architecture. The operating
system and the test applications are going to be the same for all six possible con-
figurations. Table 5.1 shows all six configurations under which each test will be
performed.

Table 5.1: Test Configurations

Paragon, i860 | Tflops, x86

interpreted Vv Vv
SFI Vv Vv
trusted Vv Vv
up-call Vv Vv

To determine the tradeoff between kernel insertion and up-calls, we will also
measure the cost of using the Puma portal event handler up-call mechanism. Again,
the handlers will be compiled using lcc. No protection mechanisms will be compiled
into these handlers, since they run at user level.

Table 5.2 lists the steps to be performed and approximate completion dates:
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Table 5.2: Project Milestones
Completion | Task
Date

4/1/96 | Initial design of R-code completed plus set of tools
(non-optimized interpreter, assembler, disassembler).

5/1/96 | Retarget lcc to produce i860 code.

5/1/96 | Retarget lcc to produce R-code.

9/8/96 | Puma kernel able to insert R-code and interpret it on message
arrival.

10/1/96 | Optimized i860 versions of kernel interpreter.

10/13/96 | R-code modified to be best suitable as a target for lcc.
10/17/96 | 1860 back-end of lcc modified to insert software isolating
instructions.

11/1/96 | i860 back-end modified to generate runtime checks for type-safe

languages.
11/1/96 | Execution of software isolated code in i860 kernel enabled.
11/15/96 | x86 back-end of lcc modified to insert software isolating
instructions.

11/15/96 | Optimized x86 versions of kernel interpreter.

11/22/96 | x86 back-end modified to generate runtime checks for type-safe
languages.

12/1/96 | Execution of software isolated code in x86 kernel enabled.
12/15/96 | Test suite of handlers selected and compiled for all targets.
12/22/96 | Up-call mechanism in i860 kernel enabled.

1/9/96 | Up-call mechanism in x86 kernel enabled.
2/1/96 | Performance measurements completed on all targets.

3/1/96

Dissertation written.
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